Bone marrow-derived stem cells differentiate into retinal pigment epithelium-like cells in vitro but are not able to repair retinal degeneration in vivo
نویسندگان
چکیده
The bone marrow (BM) is home to different stem/progenitor populations, including tissue-committed stem cells. In this context, we have cocultured BM-derived stem cells (BMSC) in order to investigate their differentiation capacity towards the retinal pigment epithelial (RPE) lineage in vitro. Furthermore, pre-differentiated BMSC were transplanted into the pharmacologically damaged subretinal space to determine their rescue ability in vivo. BM was harvested from the tibias and femurs of adult GFP C57BL/6 mice. Differentiated hematopoietic cells were removed by lineage depletion, and CD45 BMSCs were separated by magnetic activated cell sorting (MACS). To induce differentiation, the cells were then cocultured with murine RPE for 10 days, and retinal markers were assessed using immunohistochemistry (IHC). To induce retinal degeneration, mice were treated with sodium iodate (NaIO3). Seven days later, approx. 60,000 pre-differentiated GFP BMSC, sorted by FACS, were transplanted subretinally. Optical coherence tomography (OCT) was used to follow the transplants and to quantify the retinal thickness over time. Visual acuity was measured concurrently using the optokinetic reflex (OKR). Finally, IHC was performed to investigate the expression of retina-specific markers in the transplants. CD45 BMSC adopted an RPE-like elongated morphology and showed expression of the RPE markers RPE65 and bestrophin after coculture. After transplantation of CD45 BMSC, visual acuity increased in individual animals compared to the contralateral control eye, but did not reach baseline levels. Additionally, no significant increase in retinal thickness in the transplanted eye was found. However, the cells were detectable in the subretinal space for up to 28 days and expressed the RPE markers RPE65 and bestrophin. In summary, the BMSC differentiated into RPE-like cells but were not able to restore visual function or rescue retinal morphology after subretinal transplantation.
منابع مشابه
Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملPossible mechanisms of retinal function recovery with the use of cell therapy with bone marrow-derived stem cells.
Bone marrow has been proposed as a potential source of stem cells for regenerative medicine. In the eye, degeneration of neural cells in the retina is a hallmark of such widespread ocular diseases as age-related macular degeneration (AMD) and retinitis pigmentosa. Bone marrow is an ideal tissue for studying stem cells mainly because of its accessibility. Furthermore, there are a number of well-...
متن کاملTransplantation of quantum dot-labelled bone marrow-derived stem cells into the vitreous of mice with laser-induced retinal injury: Survival, integration and differentiation
Accidental laser exposure to the eyes may result in serious visual impairment due to retina degeneration. Currently limited treatment is available for laser eye injury. In the current study, we investigated the therapeutic potential of bone marrow-derived stem cells (BMSCs) for laser-induced retinal trauma. Lineage negative bone marrow cells (Lin(-) BMCs) were labelled with quantum dots (Qdots)...
متن کاملP129: Use of Stem Cells to Regenerate Degenerative Optic Nerve
Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015